中国科学院 | 大气所 | 网站地图 | 加入收藏
首 页  | | | 论文论著 | | 科学传播 | English  
  学术报告
学术报告
学术报告 您当前所在的位置: 首页 > 学术报告 > 学术报告
Spatially extended estimates of analysis and short-range forecast error variances
来源:LASG    访问次数:    报告时间:2017-11-3
【报告人】        Dr. Jie Feng
【报告人单位】University of Oklahoma, USA
【报告时间】    2017年11月3日(星期五)10:00
【报告地点】    科研楼303会议室
【报告简介】    

Accurate estimates of analysis and short-range forecast error variances are critical for successful data assimilation and ensemble forecasting applications. Pena and Toth (2014, PT14) introduced a statistical minimization algorithm for the unbiased estimation of the variance between “truth” interpolated to a Numerical Weather Prediction (NWP) model grid and the NWP analysis or forecast (i.e., “true” errors). The method uses variances between NWP forecasts and analyses (i.e., “perceived” forecast errors) and assumptions about the growth and correlation of errors. After demonstrating in simple model experiments that the method produces unbiased error variance estimates, PT14 estimated the mean of true analysis and forecast error variances for NWP systems over large domains.

The present study expands on PT14 by (a) introducing a more suitable minimization algorithm, and by (b) deriving gridpoint based error variance estimates via a global minimization. Preliminary spatially-extended error variance estimates will be presented for (a) controlled analysis forecast experiments with a quasigeostrophic model, and (b) the NCEP operational Global Forecast System (GFS). Potential use of the spatially-extended error variance estimates include the specification of (a) background error variances in data assimilation (DA) independent of the DA schemes themselves and (b) initial ensemble perturbation variance.

 
© 1997-2010 大气科学和地球流体力学数值模拟国家重点实验室 版权所有 京ICP备06004370号
北京9804信箱LASG 邮编:100029 传真:82995172